MENU
Home Home Home
 

Driver Behavior

Overview

UMTRI researchers use multiple strategies to investigate driver behavior, including testing in simulators, on the MCity test track, and on-road naturalistic studies.  Recent topics of interest are distraction, variations with driver age, trust and acceptance of advanced driving systems, and driver workload.

Recent Publications

  • Feng F, Bao S, Jin J, Sun W, Saigusa S, Tahmasbi-Sarvestani A, and Dsa J (2018) Estimating lead vehicle kinematics using camera-based sensory data for distraction detection. International Journal of Automotive Engineering 9(3):158-164. DOI: 10.20485/jsaeijae.9.3_158
  • Feng F, Bao S, Sayer JR, Flannagan C, Manser M, and Wunderlich R. (2017) Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data. Accident Analysis & Prevention 104:125-136. DOI: 10.1016/j.aap.2017.04.012
  • Flannagan C, Bálint A, and Bärgman J. (in press) What are drivers doing when they aren’t on the cell phone? Transportation Research Part F.
  • Jermakian JS, Bao S, Buonarosa ML, and Sayer, J (2017) Effects of an integrated collision warning system on teenage driver behavior. Journal of Safety Rresearch 61: 65-75. DOI: 10.1016/j.jsr.2017.02.013
  • Li G, Li SE, Cheng B, and Green P. (2017) Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities. Transportation Research Part C: Emerging Technologies, 74:113-125. DOI: 10.1016/j.trc.2016.11.011
  • Li Z, Bao S, Kolmanovsky IV, Yin X (2017) Visual distraction detection using driving performance indicators with naturalistic driving data. IEEE Transactions on Intelligent Transportation Systems, 19(8):2528-2535DOI: 10.1109/TITS.2017.2754467
  • Liao Y, Li G, Li S, Cheng GB, and Green P. (2018) Understanding driver response patterns to mental workload increase in typical driving scenarios. IEEE Access 6(1): 35890-35900. DOI: 10.1109/ACCESS.2018.2851309.
  • Lin BTW (2017) Book Review: Human Factors in Automotive Engineering and Technology. Ergonomics in Design, 25(2), 26-27.
  • Lin BTW, Kang T-P, and Green P. (2016) Drivers’ Responses to Augmented Reality Warnings for Crash Scenarios at Urban Signalized Intersections (technical report UMTRI -2017-06), Ann Arbor, MI: University of Michigan Transportation Research Institute. https://deepblue.lib.umich.edu/handle/2027.42/136920
  • Lin BTW, Kang T-P, Green P, and Jeong H. (2016) Analysis and Modeling of Drivers’ Responses at Urban Signalized Intersections (Report No. UMTRI-2016-13), Ann Arbor, MI: University of Michigan Transportation Research Institute (UMTRI) https://deepblue.lib.umich.edu/handle/2027.42/136920
  • Molnar LJ, Pradhan AK, Eby DW, Ryan L, St. Louis RM, Zakrajsek J, Ross B, Lin BT, Liang C, Zalewski B, and Zhang L. (2017) Age-Related Differences in Driver Behavior Associated with Automated Vehicles and the Transfer of Control between Automated and Manual Control: A Simulator Evaluation. Report No. UMTRI-2017-4. Ann Arbor, MI: University of Michigan Transportation Research Institute. https://deepblue.lib.umich.edu/handle/2027.42/137653
  • Molnar LJ, Ryan LH, Pradhan AK, Eby DW, St. Louis RM, and Zakrajsek J. (2018) Understanding trust and acceptance of automated vehicles: An exploratory simulator study of transfer of control between automated and manual driving. Transportation Research Part F: Psychology and Behaviour, 58: 319-328. DOI: 10.1016/j.trf.2018.06.004
  • Nobukawa K, Bao S, LeBlanc DJ, Zhao D, Peng H, and Pan CS (2016) Gap acceptance during lane changes by heavy truck drivers: an image-based analysis. IEEE transactions on Intelligent Transportation Systems, 17(3): 772-781. DOI: 10.1109/TITS.2015.2482821
  • Reagan IJ, Brumbelow ML, Flannagan MJ, and Sullivan JM. (2017) High beam headlamp use rates: Effects of rurality, proximity of other traffic, and roadway curvature. Traffic Injury Prevention 18(7):716-723. DOI: 10.1080/15389588.2016.1228921
  • Shen J, Li G, Yan W, Tao W, Xu G, Diao D, and Green P. (2018) Nighttime driving safety improvement via image enhancement for driver face detection. IEEE Access 6:45625-45634. DOI: 10.1109/ACCESS.2018.2864629
  • Sullivan JM, Flannagan MJ, Pradhan AK, and Bao S. (2016) Literature Review of Behavioral Adaptation to Advanced Driver Assistance Systems. Washington, D.C.: AAA Foundation for Traffic Safety. AAAFoundation.org
  • Tan V, Elliott M, and Flannagan CA. (2017) Development of a real-time prediction model of driver behavior at intersections using kinematic time series data, Accident Analysis & Prevention 106:428-436. DOI: 10.1016/j.aap.2017.07.003
  • Tan V, Flannagan C, and Elliott M. (2018) Predicting human-driving behavior to help driverless vehicles drive: random intercept Bayesian additive regression trees. Statistics and Its Interface 11(4): 557–572. DOI: 10.4310/SII.2018.v11.n4.a1
  • Wang Y, Bao S, Du W, Ye Z, Sayer JR (2017) A spectral power analysis of driving behavior changes during the transition from non-distraction to distraction. Traffic Injury Prevention 18(8): 826-831. DOI: 10.1080/15389588.2017.1320549
  • Wang Y, Bao S, Du W, Ye Z, Sayer JR (2017) Examining drivers’ eye glance patterns during distracted driving: Insights from scanning randomness and glance transition matrix. Journal of Safety Research, 63:149-155. DOI: 10.1016/j.jsr.2017.10.006
  • Xiong H, Narayanaswamy P, Bao S, Flannagan C, and Sayer J. (2016) How do drivers behave during indecision zone maneuvers? Accident Analysis and Prevention 96:274-279. DOI:10.1016/j.aap.2015.04.023.
  • Yu B, Chen Y, Bao S, Xu D (2018) Quantifying drivers' visual perception to analyze accident-prone locations on two-lane mountain highways. Accident Analysis & Prevention 119:122-130. DOI: 10.1016/j.aap.2018.07.014